A Dominant-Negative fur Mutation in Bradyrhizobium japonicum
نویسندگان
چکیده
منابع مشابه
A dominant-negative fur mutation in Bradyrhizobium japonicum.
In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. ...
متن کاملIdentification of a functional fur gene in Bradyrhizobium japonicum.
The recent identification of the iron response regulator (Irr) in Bradyrhizobium japonicum raised the question of whether the global regulator Fur is present in that organism. A fur gene homolog was isolated by the functional complementation of an Escherichia coli fur mutant. The B. japonicum Fur bound to a Fur box DNA element in vitro, and a fur mutant grown in iron-replete medium was derepres...
متن کاملFur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum.
Bradyrhizobium japonicum expresses both Fur and Irr, proteins that mediate iron-dependent regulation of gene expression. Control of irr mRNA accumulation by iron was aberrant in a fur mutant strain, and Fur repressed an irr::lacZ promoter fusion in the presence of iron. Furthermore, metal-dependent binding of Fur to an irr gene promoter was demonstrated in a region with no significant similarit...
متن کاملThiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.
Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in...
متن کاملChemotaxis of Bradyrhizobium japonicum to soybean exudates.
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 2004
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.186.5.1409-1414.2004